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Abstract--A Lagrangian approach is used to describe particle dispersion in turbulent flows. Fluid particle 
trajectories are simulated with the aid of a correlation matrix evolving along the particle trajectory. 
Discrete particles are tracked in a given turbulent field taking into account crossing-trajectory effects, and 
the influence of the particles on the flow characteristics is deduced from momentum and energy exchanges 
between both phases. Comparisons of the simulations are given for both experimental and theoretical 
results for fluid particle diffusion problems. Particle dispersion predictions are presented for grid 
turbulence experiments, and for three two-phase turbulent round jets, from different authors. Predictions 
compared favourably with experimental results. 
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1. I N T R O D U C T I O N  

In the Universe, fluids are nearly everywhere, and they almost invariably contain particles. 
Applications of multiphase flow theories are therefore very wide and potentially infinite. Numerous 
models have been designed to study various situations, such as particle dispersion or transport, 
bubbly flows, slug and annular flows, and transitions between all these regimes. 

This paper is devoted to particle dispersion in turbulent flows, which has become a major domain 
of  research attracting increasing interest and with challenging fundamental aspects. Various 
applications are concerned, more particularly in geophysical systems, or in laboratory and 
industrial applications: pulverized coal or droplet flames, diesel engines or some rocket exhausts 
with applications to guidance control and radar detection.. .  

Theoretical studies of particle dispersion can be developed either by a Eulerian approach or a 
Lagrangian approach. The Eulerian approach is based on the assumption that two continuous 
fields are present, and transport equations are solved for both phases (Abbas et  al. 1980; Reeks 
1977; Durst et  al. 1984; Elghobashi et al. 1984); this approach has also been developed previously 
by the authors (Gouesbet & Berlemont 1981; G o u e s ~ t  et  al. 1984; Desjonqueres et  al. 1986; Picart 
et  al. 1986). 

In the Lagrangian approach, a number of particle trajectories are simulated, in a given turbulence 
field, i.e. the particles are considered individually. Statistical computations then lead to mean values 
which characterize the particle behaviour. Most of the papers on the topic are based on the "eddy 
lifetime" concept (e.g. Gosman & Ioannides 1981; Shuen et al. 1985; Durst et al. 1984). In 
Ormancey & Martinon (1984), another method is developed, namely the influence of the turbulence 
field on discrete particles moving in flows is mostly represented by following simultaneously a 
discrete particle and a fluid particle and, as will be described, by taking into account the 
instantaneous properties of the fluid in the construction of a discrete particle trajectory, at each 
time step. This new scheme is also used in the present paper. 

The particle trajectory simulation is different, depending on whether a fluid or a discrete particle 
is followed. For a fluid particle, its instantaneous velocity can be determined knowing the mean 
velocity, deduced from a (K-~) model, and the fluctuating velocity correlations from algebraic 
relations deduced from a second-order closure scheme (Gouesbet & Berlemont 1981; Berlemont 
et al. 1986). 

Our Lagrangian technique is, however, quite new since a correlation matrix is used in the random 
process, which simulates the Lagrangian time correlations along the whole particle trajectory. The 
eddy lifetime method implicitly produces a linear decrease in the Lagrangian time correlation, while 
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the Ormancey & Martinon (1984) method implicitly produces an exponential decrease. Our 
correlation matrix technique permits us to explicitly introduce any shape of the Lagrangian time 
correlation function. Linear and exponential decreases can then be recovered as special cases of 
our much more general formulation. 

For a discrete particle, forces acting on the particle are expressed through the Riley (1971) 
equation of motion and corrected with coefficients from Clift et al. (1978) and Odar & Hamilton 
(1964) for non-small particle Reynolds numbers and acceleration numbers. The instantaneous fluid 
velocity at the discrete particle location is obtained by use of Eulerian correlations in a 
characteristic correlation domain. 

The particle behaviour is mostly determined by the nature of the particle and the effects of 
the turbulence on their motion. But, in many industrial processes, the particle/fluid mass loading 
is large enough to modify the flow itself. These modifications can occur locally, i.e. just around 
the particle, whatever the flow, but sometimes they can change the whole turbulence field 
characteristics. We therefore have to deal with a two-way coupling turbulence/particle, which will 
be presented here also, using source terms for momentum and energy exchanges between both 
phases. 

This paper reports on the computer program PALAS (PArticle LAgrangian Simulation) for the 
prediction of particle dispersion in turbulent flows within the framework of our Lagrangian 
approach. Fluid particle trajectory, discrete particle trajectory and particle/turbulence interactions 
are successively discussed and comparisons with experimental and theoretical results are given. 

2. FLUID PARTICLE TRAJECTORY 

The first step in the Lagrangian approach under study is to simulate a fluid particle trajectory. 
The basic equation to integrate is quite simple: 

x , ( t  + At) = x , ( t )  + UiAt, [1] 

where x i ( t )  represents the location of the particle at the time t, U~ is its instantaneous velocity and 
At is the time step. The instantaneous velocity reads as the sum of the mean velocity U~ and a 
fluctuating velocity u~. 

The mean velocity is known either from experimental data or from computational predictions 
of the considered flow. The variances of the fluctuating velocities, and more generally the Reynolds 
stress tensor components, are also obtained in the same way (in our case, they are estimated from 
algebraic relations deduced from a second-order closure scheme). Hence, the main problem is to 
evaluate the fluctuating velocities ui, from the knowledge of the covariances u--~j. As a first step, 
we assume that the pdf of the fluctuating velocity field is Gaussian. Then the statistical properties 
of the field are determined by Lagrangian correlations. 

A simple way to take into account such correlations is to assume an exponential form for the 
correlation coefficient: 

R~ (~) = exp - , [2] 

where ~L is the Lagrangian integral time scale. 
Such a simulation is easily obtained with the use of a Poisson scheme (Ormancey & Martinon 

1984). A similar method has been frequently used by different authors, in which the Lagrangian 
correlation is replaced by an "eddy lifetime", depending on ~L and on the transit time of the particle 
in a given cell (Gosman & Ioannides 1981; Shuen et ai. 1985; Durst et al. 1984), but that leads 
to a linear function for the correlation---quite a rough approximation. 

However, following Hinze (1975, p. 398), it can be shown from considerations about the 
non-existence of an integral time scale for accelerations, that a more satisfactory relation for the 
Lagrangian correlation function R~ (z) is obtainedby introducing negative loops in the expression. 

The Eulerian code DISCO, previously developed in Rouen, involves a Frenkiel (1948) family of 
Lagrangian correlation functions, expressed by 

RrL(~)=exp (m2"~-])ZL COS (m2+l )  z 
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where m is a loop parameter, linked to the number and the importance of the negative parts in 
the correlation. Note that a value of zero for this parameter leads to an exponential form for the 
correlation. 

The value m = 1 has given good agreements with various experimental situations (grid 
turbulence, pipe f low.. . )  when used in the Eulerian code, and we thus decided to implement such 
a correlation function when elaborating the Lagrangian approach. However, this particular choice 
of RfL-shape is by no means conceptually essential to our approach, although it is important for 
the quality of the result (figure 2, for instance). 

Also more sophisticated turbulence models might permit an a priori  computation of the function 
RrL, which then could be included in our approach without any other modification to our 
Lagrangian scheme. More generally, this Lagrangian approach is not dependent on the specific 
turbulence model used in the present paper. It means that any method which generates the 
fluctuating velocity field can be substituted for our choice of turbulence. However, note that a (K-~) 
model supplemented with algebraic relations for the Reynolds stress tensor and Frenkiel functions 
for RrL, provides high-quality results in a reasonable CPU time. 

2.1. The One-dimensional  Formal ism 

Let u x ( n A t )  be the value of the fluctuating velocity at the time n a t .  Equation [1] can be 
integrated, and a trajectory constructed, if we can define a vector U of correlated random variables: 

U = (ux(0), Ux(at) ,  Ux(2At) . . . .  , ux ( iA t )  . . . . .  u~(nAt) ) ,  [4] 

where n represents the number of time steps needed for the considered trajectory; n is either 
constant, when dispersion is computed as a function of time, or a variable depending on the velocity 
of the particle, when the dispersion is computed as a function of the distance from the injector 
in a non-uniform flow. The components of U have to comply with the given Lagrangian correlation 
function and the Gaussian pdf. 

The mathematical process to generate U is as follows: 

---We first define a vector Y (Yi) of uncorrelated variables with a Gaussian 
distribution satisfying 

=1;  ~ = 0 ;  ~ = 0  ( i # j ) .  [51 

- -U  and Y are related through a matrix B (bij): 

U = B Y .  [61 

From [5] and [6], the Lagrangian correlations read: 

u (/At)u (jAt) = ~ bikbjk. [7] 
k 

Defining the correlation matrix A (au), 

a o = u ( i A t ) u  (jAt), [8] 

the matrix B is then determined by ([7] and [8]) 

A = B B T, [9] 

where B r is the transposed matrix of B. 

We thus obtain a Cholesky factorization of the matrix A. The whole process is mathematically 
valid when A is a symmetric, positive-definite matrix. Choosing positive elements b~; of B, we use 
the Cholesky algorithm according to the following relations (Ciarlet 1982): 

bl l  = f i l l ,  

bit = ai-L 
b l l '  

[10a] 

[10b] 
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and 

j - I  

aij- ~ bikbjk 
b~j = k= 1 (i ~ j  < 1). [lOc] 

•/ i - I  

b,~ = at,-  ~ bE (iva 1). [10d] 
k = l  

Let us note, when looking at these relations, that the ith line of B depends only on the ith line 
of A and on the previously computed elements ofB (bjk;j < i). This allows us to compute the matrix 
B and, consequently, the fluctuating velocities u~, step by step. That means that we really build a 
fluid particle trajectory, as every fluctuating velocity ui depends on all the previously-encountered 
velocities, for a given particle. 

2.2. The Two-dimensional Formalism 
For two-dimensional flows, which are considered here, we need at each time step to estimate 

ux(kAt) and uy(kAt), as the particle trajectory is determined by a vector, defined by 

U = (ux(0), uy(O), ux(At), uy(At) . . . . .  u~(iAt), uy(iAt) . . . .  ). [11] 

The correlation matrix A in this case involves three kinds of elements (see the appendix): 

(i) UxUx(kAt), UyUy(kAt) and uxuy(kAt), which are deduced from the Reynolds 
stress tensor predictions in the turbulence part of the code. 

(ii) Ux(iAt)ux(jAt) and uy(iAt)uy(jAt), which are temporal autocorrelations ex- 
pressed by a Frenkiel function. 

(iii) Ux(iAt)uy(jAt) which are temporal cross-correlations also expressed with the aid 
of the Frenkiel family of correlation functions. 

Note that these terms are linked to the non-diagonal terms of the dispersion tensor used in the 
Eulerian approach (Picart 1984), which have been shown to be negligible in most cases. However, 
they are included in the Lagrangian approach as they are necessary for the Cholesky factorization. 

2.3. Simplifications 
The method described here is simplified as follows. 
(i) A reduced matrix R, instead of A, is used, defined by 

u (iAt)u (jAt) [12] 
rij = x/  u2(iAt ) x/u2(j  At) 

or, with the Frenkiel family of correlation functions, 

- [ j  - iIAt-] ~ m ~ - i l A t  1 
r0=ex p ~ - ~ ] ) ~ L J  COS L (m 2 ~ 1)ZL A. [13] 

This scheme enables us to reduce the computing time. 
(ii) The matrix size can be physically limited when the diffusion time is larger than l0 times the 

Lagrangian integral time scale, since the correlation is nearly equal to zero. The average number 
of elements for one-dimensional problems in the matrix is thus of the order of IOzL/At. 

(iii) The Cholesky scheme is carried out step by step, without storage of the whole matrix. 
(iv) The most important simplification is that a larger time step At can be chosen with our method 

than with the Poisson process or the "eddy lifetime" scheme. For instance, in the case of diffusion 
from a point source (described in next section), a similar precision is reached with At = 0.2"r L with 
the correlation matrix, compared with a time step of the order of 0.01"t" L for the Poisson scheme. 

2.4. Comparisons with Theoretical Results 
Numerical computations have been carried out to check the validity of the method (Desjonqueres 

1987), but an important part in the validation of the method is to compare numerical results with 
analytical solutions. 
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In the particular case of homogeneous, isotropic turbulence, Hinze (1975) writes the probability 
of a fluid particle to be located at a given point, as follows: 

s { -  Uxr2  
C (x, r ) =  4r~flx--------~ exp~ ~-~--~}, [14] 

where x is the distance from the source (for diffusion from a continuous source of constant strength 
S, far away from the origin and near the axis), r is the radial coordinate, Ef is the diffusion coefficient 
and Ux the mean velocity in the x-direction. 

Figure 1 shows concentration profiles, for a distance x = 500 cm from the source vs the radial 
location. We used Ux=655cm/s,  U ,=0 ,  u-~=u--~,=171cm2/s 2 and Ef=15.6cm2/s; i.e. 
rL = 91 ms(Er = U2ZL for long diffusion times). 

The comparisons in figure 1 are between the theoretical results, simulations with our scheme with 
negative loops in the correlation (m = 1) and simulations with m = 0, i.e. with the Poisson process 
and an exponential form for the correlation. The very good agreement between the simulations and 
theoretical results confirms the validity of our approach. These results are also seemingly in favour 
of the value m = 1. However, in Lagrangian simulations, the observed differences between m = 0 
and m = I are essentially due to transient evolutions of the time-dependent diffusion coefficient E (t) 
before it reaches its asymptotic value, while in [14] this coefficient is constant. Consequently, the 
better agreement for m = 1 should not be stated too seriously. The next section will provide us with 
a non-ambiguous confirmation of the quality of the value m = 1. 

2.5. Comparisons with Experimental Results 

To justify our choice between m = 0 and m = 1, let us consider the case of fluid particle 
dispersion in a turbulent pipe flow. The experiments have been described by Taylor & Middleman 
(1974) and the results here concern the mean square displacement ~ of a tracer in a turbulent pipe 
flow of water, for a Reynolds number of 35,000, with a mean velocity on the axis of 85 cm/s and 
a pipe diameter of 5.08 cm. The Lagrangian integral time scale is 80 ms for a turbulence intensity 
of 3.2% on the centreline. The simulations are performed with the assumption that the turbulence 
is homogeneous along the particle trajectory, and that the flow is fully developed. Experimental 
data are used for turbulence quantities, in order to reduce the discrepancies coming from turbulence 
predictions. 

The results are presented in figure 2 for the mean square displacement Y-~ vs the diffusion time 
t. Experiments are compared with: 

(i) the Lagrangian approach PALAS for m = 1 (with the correlation matrix); 
(ii) the Lagrangian approach for m = 0 (Poisson process); 

(iii) the Eulerian approach DISCO developed previously (Picart et al. 1986). 

Note that the case m = 0 leads to under-predicted values for Y--~, and that a very satisfactory 
agreement is observed between the experiments and "PALAS, m = 1", and also between PALAS 
and DISCO. 
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Figure 1. Diffusion from a point source in h o m o g e n e o u s ,  

isotropic turbulence (Hinze 1975). 
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Fluid particle trajectory simulation has been proved to be realistic and the next step in the 
description of the code PALAS on the discrete particle trajectory simulation is now presented. 

3. D I S C R E T E  P A R T I C L E  T R A J E C T O R Y  

For a discrete particle, [1] does not apply due to the finite response time to changes in flow. The 
method to follow a discrete particle is therefore quite different from the scheme used previously 
for a fluid particle. 

The simulation of a trajectory relies on the equation of motion of a particle. A modified Riley 
(1971) equation has been used, and is expressed as follows: 

dV 3 z, pfCo(V_ U) IV_  U I -  pfvCA d (V t U ) 
d-7 = 

f l  d ( V -  U) 

DU 3 CH p/-P~ dt 
+ ~ ( p p -  pf)g + pfv  Dt  ~/ n ~ ( t - - ~ )  I/2dT' [15] 

where pp and Pf are the particle and fluid density, respectively, v is the particle volume, V and U 
are the instantaneous velocity of the particle and the fluid, respectively, d is the particle diameter, 
g is the gravity vector, d/dt is the temporal derivative along the discrete particle trajectory and D/Dt 
is the temporal derivative along the fluid motion. The coefficients Co, Ca and CA are corrections 
which are introduced in the original Riley equation on the drag term, the history or Basset 
term and the added mass term, respectively, to take into account non-small particle Reynolds 
numbers and acceleration numbers. These coefficients are the only differences between the Riley 
equation and [15]. 

Equation [15] requires the following assumptions: 

(i) The particles are spherical and undistorted. 
(ii) The particles are not rotating. 

(iii) The particles are not interacting and do not influence the turbulence. 
(iv) Streamline curvature effects are neglected. 

Let us also note that the particle diameter is assumed to be smaller than the Kolmogorov scale 
of the turbulence field, an assumption linked to the necessity to consider the fluid field as being 
quite homogeneous around the particle. However, this severe condition must be considered as 
sufficient but by no means necessary. 

The particle Reynolds number is defined by 

R% = IV - UId., [16] 
v 

and, following Clift et al. (1978), for Rep < 200, 

24 
- R%' ); [17] Co -- ~--~ (1 + 0.15 _o68~ 

and, following Odar & Hamilton (1964), for R% < 60, 

0.066 
CA=1.05 A~+0.12 '  [181 

3.12 
Ca = 2.88 4 (Ac + 1) 3 [19] 

and 
JV - U I  2 

Ac= d d %  t U) I. [20] 

For the comparisons described in the next section, the Basset term is neglected. This assumption 
has been justified by previous computations with the Eulerian approach. Equation [15] involves 
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Figure 3. Fluid particle and discrete particle interaction. Figure 4. Change of the coordinate system. 

instantaneous particle and fluid velocities. For the fluid, the instantaneous velocity is obtained by 
adding mean values from the turbulence data and a fluctuating contribution evaluated through the 
process described in subsection 2.1. We now mention that the temporal derivatives d/dt and D/Dt 
of the fluid fluctuating velocities are neglected. Such a simplification is justified for low turbulence 
intensities and moderate departures from homogeneity (Ormancey 1984). The corresponding 
derivatives of fluid mean velocities are, however, preserved. 

3.1. Integration of the Equation of Motion 

The main problem arising in the integration of the equation of motion of a discrete particle is 
to determine the instantaneous fluid velocity at the location of the discrete particle. The fluid mean 
velocity can be easily obtained by approximations of results from the (K-O model, but the 
fluctuating part of the velocity needs special treatment (Berlemont 1987; Desjonqueres 1987). 

The method consists of the simultaneous simulation of a discrete and a fluid particle trajectory, 
starting from the same point at the same time. The fluid particle trajectory is constructed using 
the process previously described, and at each time step, it is required to determine the fluid velocity 
at the point P, where the discrete particle is, from the fluid velocity, known at point F, where the 
fluid particle is, as shown in figure 3. The "translation" from one point to another is carried out 
by use of Eulerian correlations. This requires a change in the coordinate system, so that the first 
base velocity u, is collinear to the vector FP (figure 4). 

We then define a correlation matrix, which for two-dimensional cases reads 

u, udF) u~,(F) 
u, (F)u, (P) u2(F)ul(P ) 
u,(F)u2(P) u2(F)u2(P) u,(P)u2(P) 

[21] 

where the correlations are expressed with the Frenkiel family of correlations, i.e. 

r [ ] u,(F)uj(P) ~~/u~(P)expF. 2-:-7.-1 mr = cos [22] 
L tm -t- t) LEU_J (m + 1) LEi ) 

where r is the distance between the points P and F and LEU are Eulerian spatial correlation scales, 
which are known from experimental data or turbulence modelling. An inverse change of the 
coordinate system leads then to the required fluctuating velocites, ux and uy for example. 

However, the distance between the points F and P must be significant for the correlation domain 
defined around the fluid particle. This means that if the discrete particle and the fluid particle are 
moving too far away from each other, the instantaneous fluid velocity "encountered" by the 
discrete particle can not be estimated by the scheme. 

We are faced with the well-known phenomenon of crossing-trajectory effects, which is exhibited 
here. We thus define a length scale LD which characterizes the correlation domain. When the 
discrete particle is outside that domain, i.e. when r > LD, we "change" the fluid particle. The 
trajectory of the new fluid particle is then simulated from the location of the discrete particle, and 
so on (figure 3). The whole process leads to a discrete particle trajectory Lagrangian simulation, 
and theoretically solves the problem. 

However, it appears that an important problem lies in the scale computations. This problem 
concerns, more specifically, turbulence modelling and still remains unsatisfactorily solved. This is 
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Figure 6. Crossing-trajectory effects in grid turbulence 
(Wells & Stock 1983), E = 0 V. 
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the reason why the validation of  the dispersion module of  the code PALAS has been carried out 
with experimental data for the scales, where possible. Otherwise, relations are defined as follows: 

and 

ZL,,j = CL uiuj [23a] 
E 

LE/j = C / j ~  TL/j, [23b] 

where C U is a constant depending on the scale considered. Let us note that for isotropic turbulence, 
LE=: = LEU/2, when L~,I is known, for instance. The constant CL is taken equal to 0.2 for jets or 
pipe flows (Picart et al. 1986). The correlation length scale LD is taken as an arithmetic mean value 
between the normal scales. 

3.2. Comparisons with Experimental Results 

The Lagrangian approach has been compared with different experimental situations, namely the 
experiments of  Snyder & Lumley (1971), Wells & Stock (1983) and Arnason (1982). The results 
of  all these comparisons can be found in Desjonqueres (1987), Berlemont (1987) and Gouesbet 
et al. (1987), only the comparisons with the Wells & Stock (1983) experiments are presented here. 

The experimental set-up consisted of  a grid turbulence, and the main direction of  the flow was 
horizontal. Turbulence measurements were made and energy decay laws characterizing the flow 
were given. These laws are used in the simulations to describe the turbulence field. The particles 
were glass spheres, with dia 5 or 57/zm and density = 2.45 g/crn 3. They were injected along the 
centre of  the flow and submitted to electrical field E to control the crossing-trajectory effects. These 
external forces tend to decrease or amplify the gravity forces. 



PARTICLE LAGRANGIAN SIMULATION IN TURBULENT FLOWS 27 

Results are presented in figures 5-7 concerning the experimental data, Lagrangian simulations 
with the code PALAS and results from the Eulerian approach DISCO (Heart et al. 1986). The mean 
square displacement ~ is plotted vs X/M, where X is the distance from the beginning of the 
dispersion and M is the grid mesh. Very good agreement is observed between all the results. Let 
us note that the agreement between DISCO (Eulerian approach) and PALAS (Lagrangian 
approach) is quite impressive. However, the simulation of the crossing-trajectory effects is much 
more physically realistic in the Lagrangian approach than in the Eulerian approach, where it is 
involved through a semi-empirical correction factor which contains a constant Cp. Let us mention 
that a wrong value for this constant has been stated previously (Picart et al. 1986). The new value 
is half the the proposed value, namely 0.42 instead of 0.85. The reason for the error was an incorrect 
translation of one FORTRAN statement, i.e. a constant C~ was used, which was equal to 2Cp. 
All other results and discussions in Picart et al. (1986) are unmodified. 

4. INFLUENCE OF THE PARTICLES ON THE TURBULENCE 

In the above simulations, it was assumed that the particles do not modify significantly the 
turbulent structure of the flow field. But in many situations, the mass loading ratio is large enough 
to make this asssumption unrealistic. We, thus, have to use a two-way coupling scheme between 
turbulence and particles. 

The scheme consists of momentum and energy exchanges between both phases (e.g. Durst et aL 
1984; Shuen et al. 1985; Milojevic & Borner 1986). Iterations are carried out between the turbulence 
module and the particle module, which in the present studies are < 3. Momentum exchanges 
between both phases occur through surface forces and are dependent on the particle volume 
fraction. Thus, the source term for the momentum equations reads 

_ F/dV,\ [241 l ,.j_j 

where ~ is the temporal average value of the particle volume fraction, ( ) represents the set 
average over a number of particle trajectories and Vi is the instantaneous particle velocity in the 
ith direction. It is assumed in such a relation that the ergodicity theorem is valid, meaning that 
temporal average and set average can be identified. 

The approximation for each trajectory (over a large number of trajectories) reads 

dV, "v V ° -  V~. 
= v;  t25] 

where the superscript "o" stands for output and the superscript 'T'  for input of the ith cell 
(indicated by subscript i), Xj is the j th  coordinate and V~ v is the mean velocity of the particle in 
the cell. 

The exact source term for the turbulence energy is (Desjonqueres 1987) 

S~ = U, Sp/= UiSvi - Ui Spi, [26] 

where ug and Spi refer to instantaneous values. 
The exact source term for the dissipation equation is 

OSpi [27] S~ = 2v ~ Oxj 

which is modelled as 

where C,3 is a new constant. 

E 
Sp, = C,3 ~, Spk, [28] 

4. I. Comparisons with Three Jets 

It is first important to mention that the results which are presented here have been obtained with 
the same code, without any change in the program, except the initial conditions, flow geometry 
and length or time steps. 
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The following constants were used, including the well-known corrections for a turbulent round 
jet (Launder & Spalding 1974): 

(K-O model 

and 

C~ = 0 . 0 9  - 0 . 0 4 f ,  

C,2 = 1.92 - 0.067f 

where Uc is the longitudinal velocity on the jet axis, Y is the half-width of the jet and 
AU is the radial variation of the velocity over Y; 

C1=1.44, a x = l . 0 ,  a ,=1 .3 .  

Algebraic relations for ~ (Rodi 1979; Gouesbet & Berlemont 1981) 

C~=2.5, 71=0.76, 72=0.17, 73=0.2. 

Particle~turbulence interaction 

C,3 = 1.9. 

Statistics are carried out for 5000 trajectories, which leads to a typical CPU time (IBM 3090) 
of 200 s, when the time step is equal to ZL/10. Statistical errors are very small as can be observed 
from the smooth character of the curves. Residual oscillations (as in, for example, figure 17) could 
be attenuated by increasing the number of trajectories. 

4.1.1. Jet case l'(Modarress et al. 1984) 

The first case concerns Modarress et al.'s (1984) experiment. A turbulent round free jet of air 
discharges from a pipe of D = 2 cm dia in an external air flow (dia = 60 cm) of very small velocity, 
meaning that it can be assumed to be at rest. Glass particles of 50 pm dia, with mass loadings of 

= 0.32 or 0.85 are transported by the flow. More details on the experimental design are given 
in table 1. The whole set of results is presented in Milojevic & B6rner (1986) and only some of 
them are reported here. The fluid mean velocity is presented in figure 8, for X/D = 20, where X 
is the distance from the jet exit, for • = 0 (no particle), 0.32 and 0.85 vs r/X, where r is the distance 
to the axis. The agreement is perfect for ~ = 0, merely reflecting the quality of the turbulence 
model. The overall agreement between the simulations and experiments is very satisfactory for 

= 0.32 and 0.85, where the presence of particles increases the jet velocity. The particle velocities 
are shown in figure 9 for ~ = 0.32 and 0.85. The agreement is again very satisfactory. 

Figure 10 presents the fluid r.m.s, velocities for X/D = 20 and • = 0.32, and figure 11 shows 
the cross-correlations uxur for the same conditions. Again, all these comparisons are very 
satisfactory. 

Table 1 

Fluid phase 
Centreline velocity (m/s) 
Density (kg/m 3) 
Mass flow rate (kg/s) 
Reynolds number  

Solid phase 
Particle diameter (/am) 
Particle density (kg/m ~) 
Centreline velocity (m/s) 
Mass flow rate (kg/s) 

(it) = 0.32 
¢~ = 0.85 

12.6 
1.178 
3.76 x 10 -3 

13,300 

50 
2990 

12.5 

1.2 x 10 -3 
3.2 × 10 -3 
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Figure 9. Jet case 1: particle mean velocities (Modarress 
et al. 1984). 
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10. Jet case I: fluid r.m.s, velocities (Modarress 
et al. 1984). 

The particle r.m.s, velocity is shown in figure 12 for ¢ = 0.32 and X/D = 20. The experimental 
results are under-predicted, but the agreement is still satisfactory. Finally, the jet half-width is 
presented in figure 13 for ¢ = 0.32 and 0.85, and the simulations and the experimental data agree 
very well. 
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Figure 11. Jet case I: fluid cross-correlation (Modarress 
et aL 1984). 
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Figure 13. Jet case 1: jet half-width (Modarress et al. 1984). 

200 - 

1 5 o -  

E qJ 

E 1OO - 
C] O - f <  2 

~. eo 

I I I 
0.01 0.04 0.08 0.12 

r / X  

PALAS u x 

[] MODA. u x 

m _ _ ~  PALAS u r 

• MODA. u r 

I I 
0.16 0.20 

Figure 12. Jet case 1: particle r.m.s, velocities (Modarress 
et aL 1984). 
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Figure 14, Jet case 2: centreline mean velocity (Hishida 
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Figure 15. Jet case 2: jet half-width (Hishida et al. 1985). 
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Figure 16. Jet case 2: fluid and particle mean velocities,  
X / D  = l0  (Hishida et al. 1985). 
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Figure 17. Jet case 2: fluid and particle mean  velocities,  
X / D  = 20 (Hishida et al. 1985). 
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Figure 18. Jet case 2: fluid and particle r.m.s, velocities,  
X / D  = 20 (Hishida et al. 1985). 
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Figure 19. Jet case 3: fluid mean velocity (Shuen et al. 1985), Figure 20. Jet case 3: particle mean velocity (Shuen et at. 
X / D  = 20 and X / D  = 40. 1985), X / D  = 20 and X / D  = 40. 
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Figure  21. Jet  case 3: fluid r.m.s, velocity (Shuen et al. 1985), 
X/D = 20 and X/D = 40. 
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Figure  22. Jet  case 3: par t ic le  r.m.s, veloci ty  (Shuen et al. 
1985), X/D = 20 and  X/D = 40. 

4.1.2. Jet case 2 (Hishida et al. 1985) 

The flow geometry consists of a 13 mm dia pipe which is discharging air at 30 m/s, loaded with 
glass panicles of density 2.550 kg/m 3. The mass loading ratio is 0.3 and the Reynolds number is 
2.2x 104. 

The fluid centreline mean velocity is presented in figure 14 and the jet half-width in figure 15, 
vs X/D.  The agreement is very satisfactory. 

The fluid and particle mean velocity profiles are presented in figures 16 and 17, for two locations, 
namely X / D  = 10 and 20. Um is the mean centreline velocity for the single phase and YI/2 is the 
jet half-width. Very good agreement is observed for the fluid in both cases and for the particle at 
X / D  = 10, but slight discrepancies are observed at X / D  = 20. 

The longitudinal fluid and particle r.m.s, velocity at X / D  = 20 are shown in figure 18. Quite good 
agreement is observed here also. 

4.1.3. Jet case 3 (Shuen et al. 1985) 

The flow geometry is similar to the previous jets, but the particle mean diameter is 79/~m, the 
pipe diameter is 10.9 mm, the mean velocity is 24.1 m/s and the mass loading is 0.2 for particles 
with a density of 2.650 kg/m 3. 

All the results are given vs the reduced radial coordinate r/X,  and for two locations, namely 
X / D  = 20 and 40. Fluid mean velocities are presented in figure 19 and particle mean velocities in 
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F igure  23. Jet  case 3: fluid e r o u . . ~ r r e l a f i o n  (Shuen et aL 
1985), X / D  = 20 and X / D  = 40. 
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Figure 24. Comparison of particle r.m.s, velocities for the 
three jets, at X/D = 20. 
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figure 20. In the same way, the fluid and particle longitudinal r.m.s, velocity are plotted in figures 
21 and 22. The tangential correlation uxu, is compared with experimental data in figure 23. 

Good agreement is observed for the whole set of fluid results, as was previously noted. Some 
differences arise between predictions and experimental results for the particles, but as mentioned 
below, the initial conditions are probably the main reason for these discrepancies. 

5. MISCELLANEOUS REMARKS 

The initial conditions are obtained for the three cases by the same process. We assume 
fully-developed pipe flow profiles for the inlet conditions for the fluid. These results are obtained 
with a (K-E) model, supplemented with algebraic relations for the Reynolds stress tensor. The inlet 
particle mean velocity is given in the experiment descriptions, and the particle fluctuating velocities 
are assumed to be equal to the fluid fluctuating velocities, quite a rough assumption due to the 
lack of precise experimental data. 

It can be stated, obviously, that these initial conditions are probably not the exact experimental 
conditions, and they certainly produce some "undesired" errors in the predictions. 

Since the three jets are quite identical, and to reflect experimental differences, figure 24 presents 
the particle fluctuating velocity profiles for the three jets and the three simulations. The particle 
r.m.s, velocity is reduced by the particle mean velocity and represented vs r /X,  for the location 
X / D  = 20. 

It can be observed that the simulations are essentially identical for the three cases, while the 
experimental results exhibit a spreading behaviour. This shows both the difficulties in experimental 
studies and the importance of precise boundary and initial conditions in any simulation. 

6. CONCLUSION 

The Lagrangian approach which has been presented relies on particle trajectory simulations. The 
influence of turbulence on the particle behaviour is described by the simultaneous construction of 
two trajectories, one for a fluid particle and one for a discrete particle. The differences between 
the two trajectories are represented through Eulerian correlations which transfer information from 
the fluid to the particle. 

For a fluid particle, we introduce a correlation matrix which evolves with the statistical properties 
of the flow encountered by the particle. A discrete particle trajectory is obtained with the aid of 
an equation of motion and taking into account the crossing-trajectory effects by a change in the 
fluid particle which is simultaneously followed. 

The influence of the particles on the turbulence field is represented by the use of source terms 
in the governing equation of a (K--c) model. These source terms are estimated from momentum 
and energy exchanges between both phases. 

The code PALAS is compared with theoretical and experimental results, more particularly with: 

--Fluid particle diffusion in homogeneous and isotropic turbulence (Hinze 1975). 
--Fluid particle diffusion in a turbulent pipe flow (Taylor & Middleman 1974). 
--Particle dispersion in grid turbulence (Wells & Stock 1983). 
--Three two-phase turbulent particle-laden jets (Modarress et al. 1984; Hishida 

et al. 1985; Shuen et al. 1985). 

The predictions compared favourably with the whole set of data and further developments of 
the code are now planned. 
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